
Single-Table Inheritance with Transfer
Posted At : January 27, 2009 7:53 PM | Posted By : Bob Silverberg
Related Categories: OO Design, ColdFusion, Transfer

I want to talk about object inheritance, which may sound a bit enigmatic, so I'm going to start with an example:

Let's say I have a number of types of Employees that I'm trying to model. I have Developers, who have attributes such as favouriteLanguage and enjoysDeathMetal
and behaviours such as code() and test(). I have Designers, who have attributes such as favouriteColour and toleratesDevelopers and behaviours such as makePretty()
and makePrettier(). And I have Analysts, who have attributes such as levelOfAttentionToDetail and totalPagesOfRequirementsProduced and behaviours such as ask()
and tell().

In addition to those specific attributes and behaviours, all of these employee types also share some common attributes, such as userName, firstName and lastName
and also have common behaviours such as startDay(), takeBreak() and askForRaise().

This is an example of inheritance, a form of one-to-one relationship. We can say that a Developer is an Employee, a Designer is an Employee and an Analyst is an
Employee. It is not an example of composition. We would not say that a Developer has an Employee or that an Employee has a Developer. The terms that are
commonly used to describe this relationship between classes are Supertype and Subtype. Employee is a Supertype, while Developer, Designer and Analyst are all
Subtypes of Employee.

So, the question is, how do I implement this model using Transfer?

My first inclination was to attempt Multi-Table Inheritance, which is a fancy way of saying that I'd have an Employee table that stores all of the common attributes,
and I'd have three additional tables, one for each EmployeeType that stores their specific attributes. For example, I'd have a Developer table with columns for
favouriteLanguage and enjoysDeathMetal. Unfortunately, try as I might, I could not get that to work with Transfer without using a OneToMany or a ManyToOne. And I
really don't want to use a OneToMany or a ManyToOne to represent what's really a OneToOne. As I've already described, this is an example of inheritance, not
composition. So instead I opted to try Single-Table Inheritance.

Single-Table Inheritance means, simply, that there's only one table, the Employee table. It contains columns for all of the common attributes and columns for all of
the specific attributes. Each of the columns that is specific to one EmployeeType allows nulls, so a record for a Developer would only have data populated into the
favouriteLanguage and enjoysDeathMetal columns, while the favouriteColour and levelOfAttentionToDetail columns would contain nulls.

Those of you who are fond of normalization, as I am, will cringe a bit, but really, normalization is a bit passé these days. With the cost of disk space dropping all the
time and the speed of processors increasing, denormalization has become downright acceptable. But I digress. What I chose to attempt to implement is this Single
Table Inheritance scheme using Transfer. Actually that's not entirely accurate, really Paul Marcotte and I chose to attempt this - we worked together on this solution
so these ideas are as much his as they are mine.

Anyway, what would the transfer.xml file for this look like? I'm going to start with a simple example, which is not ideal, and then add to it to address its inherent
problem:

<package name="employee">

 <object name="Developer" table="tblEmployee" decorator="Developer">

 <id name="userName" type="string" />

 <property name="firstName" type="string" />

 <property name="lastName" type="string" />

 <property name="FavouriteLanguage" type="string" />

 <property name="enjoysDeathMetal" type="boolean" />

 </object>

 <object name="Designer" table="tblEmployee" decorator="Designer">

 <id name="userName" type="string" />

 <property name="firstName" type="string" />

 <property name="lastName" type="string" />

 <property name="FavouriteColour" type="string" />

 <property name="toleratesDevelopers" type="boolean" />

 </object>

 <object name="Analyst" table="tblEmployee" decorator="Analyst">

 <id name="userName" type="string" />

 <property name="firstName" type="string" />

 <property name="lastName" type="string" />

 <property name="levelOfAttentionToDetail" type="string" />

 <property name="totalPagesOfRequirementsProduced" type="numeric" />

 </object>

</package>

What I've done is define three separate objects to Transfer, each of which points to the same table. For each object I only define those properties that are valid to
that object. For example, the Developer object has a FavouriteLanguage property but not a FavouriteColour property. In terms of behaviours, I create an
Employee.cfc decorator (the Supertype) that contains all of my common methods, e.g., askForRaise(), and I create decorators for each of the employee types
(Subtypes) which extend the Supertype's decorator. For example, Developer.cfc extends Employee.cfc and it includes the method code(). This all works quite well,
but there's a problem.

The problem is how to protect the integrity of the Subtypes. What do I mean by that? Here's an example:

Let's say there's a Developer named Bob in the system. I could say:

objDeveloper = Transfer.get("employee.Developer","Bob");

And I'd get back a Developer object for Bob. I could then call getFavouriteLanguage() and askForRaise() and code() on that object. Fine. But what if I did this:

objDesigner = Transfer.get("employee.Designer","Bob");

Bob's Blog - Crafting Software: Single-Table Inheritance with Transfer

http://www.fancybread.com

Hmm, now I have a Designer object, but it's not valid because really the employee I'm dealing with is a developer. I can no longer call getFavouriteLanguage() nor
code() on the object, but I can call getFavouriteColour() and makePretty() on the object, which would probably end up badly, considering that Bob is really a
developer, not a designer. So this is a problem. But there's a solution. Enter EmployeeType.

First we create an object for EmployeeType, and then we create a ManyToOne between each of our Subtypes and EmployeeType. For example, Developer has a
ManyToOne pointing to EmployeeType. Finally, we change the Subtypes to use a composite key instead of a single id. So the key to Developer, for example, is no
longer just userName. It's now userName plus EmployeeType. Now, whenever we want to ask for an instance of an employee, we will specify both the userName and
the EmployeeType. This "specifying the EmployeeType" will happen automatically in the Gateway - we won't have to do it manually. To take a look at this
implementation let's start with the transfer.xml:

<package name="employee">

 <object name="Developer" table="tblEmployee" decorator="Developer">

 <compositeid>

 <property name="userName" />

 <manytoone name="EmployeeType" />

 </compositeid>

 <property name="userName" type="string" />

 <property name="firstName" type="string" />

 <property name="lastName" type="string" />

 <property name="FavouriteLanguage" type="string" />

 <property name="enjoysDeathMetal" type="boolean" />

 <manytoone name="EmployeeType">

 <link to="employee.EmployeeType" column="employeeTypeId"/>

 </manytoone>

 </object>

 <object name="Designer" table="tblEmployee" decorator="Designer">

 <compositeid>

 <property name="userName" />

 <manytoone name="EmployeeType" />

 </compositeid>

 <property name="userName" type="string" />

 <property name="firstName" type="string" />

 <property name="lastName" type="string" />

 <property name="FavouriteColour" type="string" />

 <property name="toleratesDevelopers" type="boolean" />

 <manytoone name="EmployeeType">

 <link to="employee.EmployeeType" column="employeeTypeId"/>

 </manytoone>

 </object>

 <object name="Analyst" table="tblEmployee" decorator="Analyst">

 <compositeid>

 <property name="userName" />

 <manytoone name="EmployeeType" />

 </compositeid>

 <property name="userName" type="string" />

 <property name="firstName" type="string" />

 <property name="lastName" type="string" />

 <property name="levelOfAttentionToDetail" type="string" />

 <property name="totalPagesOfRequirementsProduced" type="numeric" />

 <manytoone name="EmployeeType">

 <link to="employee.EmployeeType" column="employeeTypeId"/>

 </manytoone>

 </object>

 <object name="EmployeeType" table="tblEmployeeType">

 <id name="employeeTypeId" type="numeric" />

 <property name="name" type="string" />

 <property name="description" type="string" />

 </object>

</package>

This transfer.xml just implements everything discussed in the previous paragraph. It should be fairly straightforward. So, how do we use it? Well, all of our calls to
Transfer.get() are centralized in a Gateway, thereby encapsulating database access. So all we have to do is something like this, in our Gateway code:

Bob's Blog - Crafting Software: Single-Table Inheritance with Transfer

<cffunction name="get" access="public" returntype="any">

 <cfargument name="userName" type="any" required="true">

 <cfset var theKey = StructNew() />

 <cfset theKey.userName = arguments.userName />

 <cfset theKey.employeeType = getEmployeeTypeId("Developer") />

 <cfreturn getTransfer().get("employee.Developer",theKey) />

</cffunction>

<cffunction name="getEmployeeTypeId" access="private" returntype="any">

 <cfargument name="EmployeeType" type="any" required="true">

 <cfreturn getTransfer()

 .readByProperty("employee.EmployeeType","Name",arguments.EmployeeType)

 .getEmployeeTypeId() />

</cffunction>

What you see above is a concrete example of how it actually works, (that code would reside in DeveloperGateway.cfc) but my actual code is quite different from the
above because it's based on abstract classes. I don't want to complicate things here by getting into the details, but basically I have an EmployeeGateway which
contains parameterized code which is then inherited by the DeveloperGateway, DesignerGateway and AnalystGateway, none of which have any code in them at all.
So all that hardcoded stuff that points to "Developer" is nonexistent in my code.

The bottom line is that I can call a getDeveloper() method or a getDesigner() method from my Service, passing only the userName, and be assured that I'll always get
a valid object back.

This seems like a pretty neat solution to the problem, but so far it's only been used in theoretical situations. Can anyone see any problems with it that we haven't
thought of?

Bob's Blog - Crafting Software: Single-Table Inheritance with Transfer

